Childhood - Stella Polaris

Creator: Viktor Bowallius

Non-Governmental Organization
2y ago update

Stella Polaris is a Swedish hub where children's rights and artificial intelligence (AI) meet with the aim of coordinating, encouraging and intensifying AI-related initiatives to combat child sexual abuse.

By bringing together actors with different competences, we accelerate the development and application of concrete AI solutions. Stella Polaris is part of World Childhood Foundation and funded by the Swedish Postcode Lottery.

pages

Resources

2022-10-15 21:59 Weblink

En man i 20-årsåldern sitter sedan i tisdags häktad misstänkt för att ha groomat den minderåriga flicka som försvann under några dagar i slutet av förra veckan.

2022-04-22 07:59 Weblink Knowledgebase Swedish

Kunskapscentret samlar rapporter, satsningar, forskning och annan relevant information inom AI som kan vara till hjälp för att förhindra sexuella övergrepp mot barn.

Kunskapscentrumet inkluderar bland annat:

  • En databas över existerande tekniska verktyg, inkl. AI-verktyg, som syftar till att förhindra, identifiera eller utreda sexuella övergrepp mot barn
  • Identifierade områden där nya verktyg kan göra stor skillnad för att förhindra sexuella övergrepp mot barn.
2022-04-12 09:25 Page Tools & Methods English

Artificial intelligence is being used increasingly to combat child sexual abuse. 

This database compiles digital tools combating child sexual abuse, and has an added option to filter the database based on tools using artificial intelligence.

Read more
place

Office / Work location

Sveavägen 166, 23 tr, Stockholm, Sweden launch

Our Specialities

Competence & Expertise, Ecosystem & Partners, Usecases & Inspiration, Vision & Strategy
Child Protection
pages

Resources

2022-04-13 09:30 Post Articles & Editorial

Through this project, Technological University Dublin will develop a deployable tool that reveals the patterns of adults perpetrating online child sexual abuse and the children who are affected by such violence. 

By using  machine learning for text, the study will advance global understanding of trends in perpetrator behaviour (conduct, contact, content) – including grooming – and debunk strategies and tactics used to lure and coerce children into sexually exploitative acts.

Deep neural networks for image processing can now assist reviewers sorting through many images by prioritizing the most likely child sexual abuse material content for review.

share

Network

Employees
Leith Osama Other role
Erika Olsson Project Manager
Viktor Bowallius Data Scientist
Susanne Drakborg Project Manager